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A Low-Magnetic-Field Soft
Gamma Repeater
N. Rea,1* P. Esposito,2 R. Turolla,3,4 G. L. Israel,5 S. Zane,4 L. Stella,5 S. Mereghetti,6

A. Tiengo,6 D. Götz,7 E. Göğüş,8 C. Kouveliotou9

Soft gamma repeaters (SGRs) and anomalous x-ray pulsars form a rapidly increasing group of x-ray
sources exhibiting sporadic emission of short bursts. They are believed to be magnetars, that is,
neutron stars powered by extreme magnetic fields, B ~ 1014 to 1015 gauss. We report on a soft
gamma repeater with low magnetic field, SGR 0418+5729, recently detected after it emitted bursts
similar to those of magnetars. X-ray observations show that its dipolar magnetic field cannot be
greater than 7.5 × 1012 gauss, well in the range of ordinary radio pulsars, implying that a high
surface dipolar magnetic field is not necessarily required for magnetar-like activity. The magnetar
population may thus include objects with a wider range of B-field strengths, ages, and evolutionary
stages than observed so far.

Magnetized, isolated rotating neutron
stars are often detected as pulsating
sources in the radio and x-ray bands,

hence the name pulsars. Pulsars slow down with
time as their rotational energy is lost via mag-
netic dipole radiation. The surface dipolar mag-
netic field (B) of a pulsar can be estimated using
its spin period, P, and spin-down rate, Ṗ, as
follows:

B ¼ ð3Ic3PṖ=8p2R6Þ1=2 ∼

3:2� 1019ðPṖÞ1=2G ð1Þ
whereP is in seconds and Ṗ is in seconds/seconds;
we assumedR ~ 106 cm and I ~ 1045 g cm2, which

are the neutron star radius and moment of inertia,
respectively.

Although this expression was developed to
estimate the magnetic fields of radio pulsars,
usually ~1012 gauss (G), it has been tradition-
ally used also for magnetars, where the derived
values of B reach ~1015 G (1). To date, only ~16
of these ultramagnetized neutron stars have been
observed (2, 3); their population includes soft
gamma repeaters (SGRs) and anomalous x-ray
pulsars (AXPs). All known magnetars are x-ray
pulsars with luminosities of LX ~ 1032 to 1036 erg
s−1, usually much higher than the rate at which
the star loses its rotational energy through spin-
down. Their high luminosities together with the
lack of evidence for accretion from a stellar com-
panion (4, 5) led to the conclusion that the energy
reservoir fueling the SGR/AXP activity is their
extreme magnetic field (6, 7). Observationally,
magnetars are characterized by stochastic out-
bursts (lasting from days to years) during which
they emit very short x-ray and g-ray bursts;
they have rotational periods in a narrow range
(2 to 12 s) and, compared with other isolated
neutron stars, large period derivatives of ~10−13

to 10−10 s s−1. Their large dipolar B fields and
relatively young characteristic ages (tc) are es-
timated to be more than ~5 × 1013 G, and tc ¼
P=2Ṗ ∼ 0:2 thousand years to 0.2 million years
[see (2) for a review].

In addition to the canonical SGRs and AXPs,
two other sources are known to show magnetar-
like activity: PSR J1846−0258 (8, 9) and PSR
1622−4950 (10). The former is a 0.3 s, allegedly

rotation-powered, x-ray pulsar, with a magnetic
field of B ~ 4.8 × 1013 G (in the lower end of the
magnetar range), from which a typical magnetar
outburst and short x-ray bursts were detected. In
the latter, flaring radio emission with a rather flat
spectrum [similar to those observed in the two
transient radio magnetars (11, 12)] was detected
from a 4.3-s radio pulsar with a magnetic field in
the magnetar range (B ~ 3 × 1014 G).

In all sources with magnetar-like activity, the
dipolar field spans 5 × 1013 G < B < 2 × 1015 G,
which is ~10 to 1000 times the average value in
radio pulsars and higher than the electron quan-
tum field,BQ ¼ m2

ec
3=eℏ

e
4:4� 1013G. The ex-

istence of radio pulsars with B > BQ and showing
only normal behavior (13) is an indication that a
magnetic field larger than the quantum electron
field alone may not be a sufficient condition for
the onset of magnetar-like activity. In contrast, so
far the opposite always held: Magnetar-like ac-
tivity was observed only in sources with dipolar
magnetic fields stronger than BQ.

SGR 0418+5729 was discovered on 5 June
2009 when the Fermi Gamma-ray Burst Monitor
(GBM) observed two magnetar-like bursts (14).
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Fig. 1. (Top) Rotation phase versus time for the
coherent timing solution for SGR 0418+5729
obtained using data taken with Rossi X-ray Timing
Explorer (black circles), Swift (red triangles), XMM-
Newton (blue squares), and Chandra (green stars).
The solid line shows the best-fitting linear function
(c2 = 1.8 for 18 degrees of freedom; root mean
square ~3%). (Bottom) Fit residuals.
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Follow-up observations with several x-ray satel-
lites show that it has x-ray pulsations at ~9.1 s,
well within the range of periods of magnetar
sources (15, 16). Further studies show that SGR
0418+5729 exhibits all the typical characteristics
of a magnetar: (i) emission of short x-ray bursts,
(ii) enhanced persistent flux, (iii) slow pulsations
with a variable pulse profile, and (iv) an x-ray
spectrum characterized by a thermal plus non-
thermal component, which softened as the outburst
decayed.

What made this source distinctly different
was the failure of detecting a period derivative in
the first 160 days after the outburst onset, despite
frequent observational coverage. Several x-ray
satellites (16) monitored the source almost week-
ly since its detection. This extensive observational
campaign allowed the determination of an accurate
ephemeris for the pulsar rotational period, but no
sign of a spin-down was detected. In the first 160
days after the outburst onset, the upper limit on the
period derivative was 10−13 s s−1 (90% confidence
level), which, according to Eq. 1, translates into a
surface dipolar magnetic field B < 3 × 1013 G (16).
This limit is quite low for a magnetar source, but
not abnormally so, given the detection of a com-
parable magnetic field in the magnetar-like PSR
J1846−0258 (8), or the case of AXP 1E 2259+586
with B ~ 6 × 1013 G (17).

SGR 0418+5729 could not be monitored for
a while after the first 160 days, because the Sun
became too close to its position in the sky. On
9 July 2010, soon after it became observable
again, we started an extensive monitoring of the
source with the Swift, Chandra, and X-rayMulti-
mirror Misson–Newton (XMM-Newton) x-ray
satellites (table S1). In particular, on 23 July 2010,
we detected it with theAdvancedCharge-Coupled

Device Imaging Spectrometer (ACIS) onboard
Chandra at a flux of (1.2 T 0.1) × 10−13 erg s−1

cm−2 (0.5 to 10 keV), more than one order of
magnitude fainter than in the previous available
observation (16). The spectrum is well fit by an
absorbed blackbody with a line-of-sight absorp-
tionNH = (1.5 T 1.0) × 1021 cm−2 and kT = 0.67 T
0.11 keV (all quoted errors are at 90% confidence
level). Pulsations were also clearly detected at the
known magnetar period. On 24 September 2010,
we observed SGR 0418+5729 with the European
Photon Imaging Camera (EPIC) onboard XMM-
Newton, which detected it at a comparable flux,
and could measure again the rotational period of
the neutron star. We used our new Swift, Chandra,
and XMM-Newton observations, together with
several other observations (table S1) and phase-
connected all the source data from 5 June 2009
until 24 September 2010 (Fig. 1 and Supporting
Online Material). We found a best-fit period of
9.07838827(4) s referred to TJD (Truncated Julian
Day) 14993.0 and to the solar system barycenter.
The phase evolution of SGR 0418+5729 is well
described by a linear relationϕ =ϕ0 + 2p(t − t0)/P,
and a quadratic term −2pṖðt − t0Þ2=2P2 (which
reflects the presence of a spin-down) is not sta-
tistically required. This implies an upper limit
on the period derivative of SGR 0418+5729 of
Ṗ < 6:0� 10−15s s−1 (90%confidence level).This
value is the smallest of all known SGRs/AXPs, of
the two magnetar-like pulsars PSR J1846−0258
and PSR1622−4950, and of the x-ray dim isolated
neutron stars (XDINSs) (18) for which a mea-
sure of Ṗ is available (Fig. 2). The correspond-
ing limit on the surface dipolar magnetic field
of SGR 0418+5729 is B < 7.5 × 1012 G, making
it the magnetar with the lowest surface dipolar
magnetic field yet. The upper limit on the period
derivative implies a characteristic age of the
source tc > 24 million years.

Although the characteristic age is known to
overestimate the true age of a neutron star inwhich
magnetic field decay occurred (19), as is likely the
case of SGR 0418+5729, the rather high Galactic
latitude (b = 5.1 deg) and its position on the P−Ṗ
plane [close to the death line for radio pulsars,
belowwhich the radio emission is supposed to be
halted (20, 21)], suggest that this system is quite a
lot older than the other SGRs/AXPs.

The existence of magnetar-like sources with
low values ofB has several consequences. Among
isolated pulsars, which are presumably rotation-
powered, ~18% have a dipolar magnetic field high-
er than the upper limit we derived for SGR 0418+
5729 (Fig. 2). The discovery of PSR 1622−4950
(10), on the other hand, suggests that magnetar-
like behavior may manifest itself mostly in the
radio band. In this framework, our result indicates
that a large number of apparently normal pulsars
might turn on asmagnetars at any time, regardless
of whether the surface dipole magnetic field is
above the quantum limit. As a direct consequence,
magnetar-like activity may occur in pulsars with a
very wide range of magnetic fields, and it may fill
a continuum in the P−Ṗ diagram (Fig. 2).

So far, we have been considering the relation-
ship between the surface dipolar magnetic field
and magnetar-like activity. However, it is likely
that the magnetar activity is driven by the mag-
netic energy stored in the internal toroidal field
(6, 22); this component cannot be measured di-
rectly. If the magnetar model as it is currently
understood is indeed valid, despite its low surface
dipolar field, SGR 0418+5729 is expected to
harbor a sufficiently intense internal toroidal com-
ponentBtor in order to be able to undergo outbursts
and emit bursts. This large internal field can stress
the crust and ultimately deforms and cracks the
star surface layers, periodically allowing magnetic
helicity to be transferred to the external field, thus
causing the (repeated) short x-ray bursts and the
overall magnetar-like activity (6, 23, 24).

As with other magnetars, Btor can be esti-
mated assuming that the magnetic energy stored
in the internal toroidal field powers the quies-
cent emission of SGR 0418+5729 during its
entire lifetime,B2

tor ∼ 6LXtc=R3
NS (6). Assuming a

source distance of 2 kpc (14, 16), and that the
current luminosity LX ~ 6.2 × 1031 erg s−1 (the
lowest measured so far for this source) corre-
sponds to the quiescent luminosity, we obtain
Btor ~ 5 × 1014 G for a neutron star radius of
RNS = 106 cm and a source characteristic age of
tc ~ 24 million years. A value of the same order
is obtained if the ratio of the toroidal to poloidal
field strength is ~50, as in the magneto-thermal
evolution scenario (25, 26). In this picture, SGR
0418+5729 may possess a high enough internal
magnetic field to overcome the crustal yield and
give rise to magnetar-like activity despite its low
surface dipolar magnetic field. However, should
the actual measurement of the surface dipolar B
field of SGR 0418+5729 turn out to be much
smaller than the present upper limit, it may be
necessary to rethink some of the ingredients at
the basis of the magnetar scenario.

SGR 0418+5729 may represent the tip of the
iceberg of a large population of old and low-
dipolar-field magnetars that are dissipating the
last bits of their internal magnetic energy (27).
Indeed, a large fraction of the radio pulsar pop-
ulation may have magnetar-like internal fields
not reflected in their normal dipolar component.
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Anomalous Strength Characteristics of
Tilt Grain Boundaries in Graphene
Rassin Grantab,1 Vivek B. Shenoy,1* Rodney S. Ruoff2*

Graphene in its pristine form is one of the strongest materials tested, but defects influence its
strength. Using atomistic calculations, we find that, counter to standard reasoning, graphene
sheets with large-angle tilt boundaries that have a high density of defects are as strong as the
pristine material and, unexpectedly, are much stronger than those with low-angle boundaries
having fewer defects. We show that this trend is not explained by continuum fracture models
but can be understood by considering the critical bonds in the strained seven-membered carbon
rings that lead to failure; the large-angle boundaries are stronger because they are able to
better accommodate these strained rings. Our results provide guidelines for designing growth
methods to obtain sheets with strengths close to that of pristine graphene.

Graphene is one of the thinnest materials
ever synthesized, yet it is one of the
strongest ever measured (1, 2), and it ex-

hibits exceptional electronic, thermal, and optical
properties (1, 3); however, growing large-area,
single-layer graphene sheets remains a major
challenge. Recently, a chemical vapor deposition
(CVD) technique has been devised that exploits
the low solubility of carbon in metals such as
nickel (4, 5) and copper (6, 7) in order to grow
graphene on metal foils. A consequence of this
technique is that the large-area graphene sheets
contain grain boundaries, because each grain in
the metallic foil serves as a nucleation site for
individual grains of graphene (6).

Tilt grain boundaries in graphite had first been
observed in scanning tunneling microscopy (STM)
experiments by Albrecht et al. (8), and since then
several groups have performed similar microscopy
studies (9–14). More recently, Hashimoto et al. (15)

have observed individual dislocations in graphene
using transmission electron microscopy (TEM),
and the structure, as well as the electronic, mag-
netic, and dynamical properties of grain bounda-

ries in graphene have been investigated by a
number of other research teams (16–18). With all
this previous work established, a natural question
to ask is how these grain boundaries influence the
mechanical properties of graphene. Given the fact
that graphene is one of the stiffest (modulus ~
1TPa) and strongest (strength~100GPa)materials,
in order to use CVD-synthesized graphene sheets in
nano-electromechanical systems (NEMS), in sen-
sors, and as pressure barriers, it is important to
know how the grain boundaries influence these
fundamental mechanical properties.

Although a number of studies have been carried
out on the mechanics of dislocations and defects in
carbon nanotubes (19–21) and graphene (22), the
mechanical properties of hydrogen-functionalized
graphene (23), and the fracture and failure of
graphene and carbon nanotubes with multiple
vacancies (24) and Stone-Wales defects (24–26),
the effect of grain boundaries on the mechanical
properties of graphene has been largely neglected.
To address this outstanding problem, we have

1School of Engineering, Brown University, Providence, RI
02906, USA. 2Department of Mechanical Engineering and
the Texas Materials Institute, University of Texas, Austin, TX
78712, USA.

*To whom correspondence should be addressed: vivek_
shenoy@brown.edu (V.B.S.); r.ruoff@mail.utexas.edu (R.S.R.)

A B C

D E F

Fig. 1. The structures of grain boundaries in (A to C) zigzag-oriented and (D to F) armchair-oriented
graphene sheets with varying mismatch angles.
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Corrections & CLarifications

www.sciencemag.org    SCIENCE    erratum post date    17 DECEMBER 2010 

erratum
Reports: “A low-magnetic-field soft gamma repeater” by N. Rea et al. (12 November, 
p. 944). Paolo Esposito’s affiliation contained an error. He is at the Osservatorio  
Astronomico di Cagliari. The affiliation has been corrected in the HTML version online.
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